Fraud and Security

Fraud and Anomaly Detection

2019-11-29T04:49:02+00:00Categories: Level 2, Data Science Curriculum Electives, Fraud and Security, R, Dr Eugene Dubossarsky, Financial Risk, All Academy Courses|Tags: , |

This course presents statistical, computational and machine-learning techniques for predictive detection of fraud and security breaches. These methods are shown in the context of use cases for their application, and include the extraction of business rules and a framework for the interoperation of human, rule-based, predictive and outlier-detection methods. Methods presented include predictive tools that do not rely on explicit fraud labels, as well as a range of outlier-detection techniques including unsupervised learning methods, notably the powerful random-forest algorithm, which can be used for all supervised and unsupervised applications, as well as cluster analysis, visualisation and fraud detection based on Benford’s law. The course will also cover the analysis and visualisation of social-network data. A basic knowledge of R and predictive analytics is advantageous.

Best Practices in Enterprise Information Management

2019-10-24T04:45:22+00:00Categories: Data Culture Level 1, Data Culture Curriculum, Innovation & Tech (CTO) Curriculum Electives, Data Governance Curriculum, Stephen Brobst, Fraud and Security, Executive Curriculum, Data Engineering Curriculum, Data Governance Level 1, Data Management, Executive Level 2, Big Data, Data Engineering Level 1, All Academy Courses, Innovation & Tech (CTO) Level 3|Tags: , , , , , |

The effective management of enterprise information for analytics deployment requires best practices in the areas of people, processes, and technology. In this talk we will share both successful and unsuccessful practices in these areas. The scope of this workshop will involve five key areas of enterprise information management: (1) metadata management, (2) data quality management, (3) data security and privacy, (4) master data management, and (5) data integration.

Advanced Fraud and Anomaly Detection

2019-11-29T04:48:52+00:00Categories: AI Engineering Curriculum Electives, Data Science Curriculum Advanced Electives, Fraud and Security, R, Level 3, Dr Eugene Dubossarsky, Financial Risk, All Academy Courses|Tags: , |

The detection of anomalies is one of the most eclectic and difficult activities in data analysis. This course builds on the basics introduced in the earlier course, and provides more advanced methods including supervised and unsupervised learning, advanced use of Benford’s Law, and more on statistical anomaly detection. Optional topics may include anomalies in time series, deception in text and the use of social network analysis to detect fraud and other undesirable behaviours.

Agile Data Management Architecture

2019-10-24T04:46:19+00:00Categories: Predictive Analytics & AI, Data Culture Curriculum, Data Science Level 2, Data Science Curriculum Electives, Executive Curriculum Electives, Data Governance Curriculum, Innovation & Tech (CTO) Level 2, Stephen Brobst, Fraud and Security, Data Engineering Curriculum, Innovation & Tech (CTO) Curriculum, Data Governance Level 1, Data Management, AI Engineering Curriculum, Executive Level 2, Big Data, Data Engineering Level 1, AI Engineering Level 1, All Academy Courses|Tags: , , , |

This full-day workshop examines the trends in analytic technologies, methodologies, and use cases. The implications of these developments for deployment of analytic capabilities will be discussed with examples in future architecture and implementation. This workshop also presents best practices for deployment of next generation analytics.

Social Network Analysis: Practical Use Cases and Implementation

2019-10-24T04:51:00+00:00Categories: Data Governance Level 2, Predictive Analytics & AI, Data Culture Electives, Innovation & Tech (CTO) Curriculum Electives, Data Science Curriculum, Data Governance Curriculum Electives, Executive Curriculum Electives, Marketing, Data Science Level 1, Data Culture Level 2, Innovation & Tech (CTO) Level 2, Stephen Brobst, Fraud and Security, Data Management, AI Engineering Curriculum, Executive Level 2, Big Data, AI Engineering Level 2, All Academy Courses|Tags: , , , |

Social networking via Web 2.0 applications such as LinkedIn and Facebook has created huge interest in understanding the connections between individuals to predict patterns of churn, influencers related to early adoption of new products and services, successful pricing strategies for certain kinds of services, and customer segmentation. We will explain how to use these advanced analytic techniques with mini case studies across a wide range of industries including telecommunications, financial services, health care, retailing, and government agencies.