Data Science Curriculum

Our Data Science Curriculum is comprehensive in its coverage of the many topics in the field. We offer starting points for all levels – from raw beginner to expert.

Fraud and Anomaly Detection

2020-02-04T02:24:55+00:00Categories: Level 2, Data Science Curriculum Electives, Fraud and Security, R, Dr Eugene Dubossarsky, Financial Risk, All Academy Courses|Tags: , |

This course presents statistical, computational and machine-learning techniques for predictive detection of fraud and security breaches. These methods are shown in the context of use cases for their application, and include the extraction of business rules and a framework for the interoperation of human, rule-based, predictive and outlier-detection methods. Methods presented include predictive tools that do not rely on explicit fraud labels, as well as a range of outlier-detection techniques including unsupervised learning methods, notably the powerful random-forest algorithm, which can be used for all supervised and unsupervised applications, as well as cluster analysis, visualisation and fraud detection based on Benford’s law. The course will also cover the analysis and visualisation of social-network data. A basic knowledge of R and predictive analytics is advantageous.

Data Driven Management

2019-12-01T06:42:57+00:00Categories: AI Engineering Curriculum Electives, Data Engineering Curriculum Electives, Government, Data Science Curriculum, Data Governance Curriculum, Data Science Level 1, Executive Curriculum, Data Engineering Level 2, Dr Eugene Dubossarsky, Innovation & Tech (CTO) Curriculum, Data Governance Level 1, AI Engineering Level 2, Executive Level 1, All Academy Courses, Innovation & Tech (CTO) Level 1|Tags: , , , |

This course is for executives and managers who want to leverage analytics to support their most vital decisions and enable better decision-making at the highest levels. It empowers senior executives with skills to make more effective use of data analytics. It covers contexts including strategic decision-making and shows attendees ways to use data to make better decisions. Attendees will learn how to receive, understand and make decisions from a range of analytics methods, including visualisation and dashboards. They will also be taught to work with analysts as effective customers.

Deep Learning and AI

2019-10-17T05:12:36+00:00Categories: Keras, Tensorflow, Level 2, Data Science Curriculum, Python, Data Engineering Curriculum, Dr Eugene Dubossarsky, All Academy Courses|Tags: , |

This course is an introduction to the highly celebrated area of Neural Networks, popularised as “deep learning” and “AI”. The course will cover the key concepts underlying neural network technology, as well as the unique capabilities of a number of advanced deep learning technologies, including Convolutional Neural Nets for image recognition, recurrent neural nets for time series and text modelling, and new Artificial Intelligence techniques including Generative Adversarial Networks and Reinforcement Learning. Practical exercises will present these methods in some of the most popular Deep Learning packages available in Python, including Keras and Tensorflow. Trainees are expected to be familiar with the basics of machine learning from the Fundamentals course, as well as the python language.

Text and Language Analytics

2019-10-18T03:37:35+00:00Categories: AI Engineering Curriculum Electives, Level 2, Data Science Curriculum Electives, R, R Electives, Dr Eugene Dubossarsky, All Academy Courses|Tags: , |

Text analytics is a crucial skill set in nearly all contexts where data science has an impact, whether that be customer analytics, fraud detection, automation or fintech. In this course, you will learn a toolbox of skills and techniques, starting from effective data preparation and stretching right through to advanced modelling with deep-learning and neural-network approaches such as word2vec.

Forecasting and Trend Analysis

2019-11-29T04:49:49+00:00Categories: AI Engineering Curriculum Electives, Data Science Curriculum Electives, R, Dr Eugene Dubossarsky, All Academy Courses|Tags: , |

This course is an intuitive introduction to forecasting and analysis of time-series data. We will review a range of standard forecasting methods, including ARIMA and exponential smoothing, along with standard means of measuring forecast error and benchmarking with naive forecasts, and standard pre-processing/de-trending methods such as differencing and missing value imputation. Other topics will include trend/seasonality/noise decomposition, autocorrelation, visualisation of time series, and forecasting with uncertainty.

Advanced Python 1

2019-10-18T03:24:37+00:00Categories: Level 2, Data Science Curriculum, Python, Dr Eugene Dubossarsky, AI Engineering Curriculum, All Academy Courses|Tags: , |

This class builds on the introductory Python class. Jupyter Notebook advanced use and customisation is covered as well as configuring multiple environments and kernels. The Numpy package is introduced for working with arrays and matrices and a deeper coverage of Pandas data analysis and manipulation methods is provided including working with time series data. Data exploration and advanced visualisations are taught using the Plotly and Seaborne libraries.

Advanced Python 2

2019-10-18T03:25:47+00:00Categories: Data Science Curriculum Electives, Python, Level 3, Dr Eugene Dubossarsky, AI Engineering Curriculum, All Academy Courses|Tags: , |

This class builds on the introductory Python class. Jupyter Notebook advanced use and customisation is covered as well as configuring multiple environments and kernels. The Numpy package is introduced for working with arrays and matrices and a deeper coverage of Pandas data analysis and manipulation methods is provided including working with time series data. Data exploration and advanced visualisations are taught using the Plotly and Seaborne libraries.

Advanced R 1

2019-10-18T03:26:29+00:00Categories: Level 2, Data Science Curriculum, tidyverse, Shiny, Dr Eugene Dubossarsky, AI Engineering Curriculum, All Academy Courses|Tags: , |

This class builds on “Intro to R (+data visualisation)” by providing students with powerful, modern R tools including pipes, the tidyverse, and many other packages that make coding for data analysis easier, more intuitive and more readable. The course will also provide a deeper view of functional programming in R, which also allows cleaner and more powerful coding, as well as R Markdown, R Notebooks, and the shiny package for interactive documentation, browser-based dashboards and GUIs for R code.

Advanced R 2

2019-10-18T03:26:41+00:00Categories: Data Science Curriculum Electives, tidyverse, R, Level 3, Dr Eugene Dubossarsky, AI Engineering Curriculum, All Academy Courses|Tags: , |

This course goes deeper into the tidyverse family of packages, with a focus on advanced data handling, as well as advanced data structures such as list columns in tibbles, and their application to model management. Another key topic is advanced functional programming with the purrr package, and advanced use of the pipe operator. Optional topics may include dplyr on databases, and use of rmarkdown and Rstudio notebooks.

Overcoming Information Overload with Advanced Practices in Data Visualisation

2019-10-24T04:46:56+00:00Categories: Data Culture Electives, Innovation & Tech (CTO) Curriculum Electives, Data Science Curriculum, Data Science Level 1, Data Culture Level 2, Innovation & Tech (CTO) Level 2, Stephen Brobst, Executive Curriculum, Data Visualisation, Data Management, AI Engineering Curriculum, Executive Level 2, Big Data, AI Engineering Level 1, All Academy Courses|Tags: , , , , , , , |

In this workshop, we explore best practices in deriving insight from vast amounts of data using visualisation techniques. Examples from traditional data as well as an in-depth look at the underlying technologies for visualisation in support of geospatial analytics will be undertaken. We will examine visualisation for both strategic and operational BI.